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ABSTRACT 

Radiative corrections in grand unified theories based 

on N-l supergravity are studied in the limit M Planck+- with 

the gravitino mass m 
g 

fixed, to all orders in perturbation 

theory. In this paper we study the effect of non-gauge 

interactions only. It is shown that the tree level mass 

hierarchy is not destroyed by the radiative corrections, 

provided there is no light field of maas -c-c MoUT, which 

transforms as a singlet under the subgroup that is unbroken 

at a scale above m 
t3’ 

It is also pointed out that in the 

minimal supersymmetric SU(5) model, the addition of 

arbitrary soft supersymmetry breaking terms in the 

lagrangian do not, in general, preserve the mass hierarchy, 

unless the coefficientsof the soft breaking terms are fine 

tuned. The fine tuning is automatic if the supersymmetry 

breaking terms come from an underlying supergravity theory. 

a Operated by Universities Research Associallon Inc. under contract wtth the United Stales Department of Energy 
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I. Introduction 

Supersymmetry provides a potential solution to the 

hierarchy -problem’ which led many authors to construct grand 

unified models based on supersymmetric 2 theories . However, 

since supersymmetry is not an observed symmetry of nature, 

it must be broken at a scale of order 100 GeV or more. On 

the other hand, if we w ant to use supersymmetry to explain 

the smallness of the SU(2)weakxU(l) breaking scale compared 

to the Planck scale or the grand unification scale, the 

supersymmetry breaking scale should not be much higher than 

about a TeV, at least in the observable sector containing 

all the known fields of the low energy theory. An elegant 

way of breaking supersymmetry, which is consistent with most 

of the phenomenological constraints, is based on models with 

N=l 3 supergravity coupled to vector and chiral superfields . 

In most of these models the superfields are divided into two 

classes, the hidden sector and the observable sector. The 

hidden sector contains only gauge singlet chiral 

superfields, whereas the observable sector contains all the 

gauge fields, the gauge non-singlet chiral superfields, and 

may also contain some gauge singlet chiral superfields. The 

total superpotential is taken to be the sum of two terms W,, 

and W, where 5 
is a function of the fields in the hidden 

sector only, and W, is a function of the fields in the 

observable sector only. If #h and $i denote the chiral 

superfields in the hidden and the observable sectors 
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respectively, and z h and zi denote their scalar components, 

the tree level potential involving the scalar fields is 

given by4, 

V= exp C87fck ( ~lth.Iz+flti~z)j 

r 5 / a$ + sTrc~t,wJo+WJ2 +FI~~tgrrG~~~w,+w,~)12 h. h 

- 24 Tr G 1 W,+L<‘, I2 ] 

+ $g IA5 zix (-rijti zz 1’ (I- 1) 

where G is the constant of gravitation (l/M p2! and the sum 

over a runs over all generators of the gauge group. The 

superpotential W, of the hidden sector is assumed to have 

the form, 

WH C%) = b3 f+)“$.) 

where M is the 

order lo”-1 O1 3GeV 

Planck mass and b is a mass parameter of 

. In the absence of the observable sector 

fields, the potential involving the hidden sector fields is 

assumed to have a minimum at zh=z (0) 
h , such that WH(zh (O))wb3. 

This breaks supersymmetry spontaneously, giving the 

gravitino a mass, 

r*l a-= e+ ( 4-l-l-G z 1 $‘I”) ~TI-G w,,, <if;‘) Q-3) 
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which is of' order 100 GeV. WC take m3 tc be Cea[ sk s~m)~icity. 

In analyzing the full theory we must minimize the full 

potential with respect to all the fields to determine the 

ground state. The radiative corrections in this theory Will 

involve the fields in the hidden sector as well as the 

observable sector, and a.130 the non-renormalizable 

interactions mediated by gravitons and gravitinos. 

However, the theory is greatly simplified if we study it in 

the limit @+m, M +m, with m 
P g' 

and the grand unification mass 

M (which sets the scale of the observable sector 

superpotential WJ fixed. In this limit, the zh fields are 

frozen at the minimum of the potential obtained from Wn, and 

the effective potential involving the fields in the 

observable sector is given by, 

v- .E l;$,+m~ 
h 

~~*I’ +~mg-(~1-3)W(t)+h.C.3+s-t~~~’ 
A 

(1’ 4 

W(Z) = ex/~ c ‘IWG F,&‘1’3 w,,(t) (1.55) 

A = c 5 Zh -gH + s-t-r&w” 5 kL121~~;,:.i /l-t” cz;, L 

In real life, however b is smaller than M, and it is 

not a priori clear that the effective potential V, given in 

(1.4) has any connection with reality. But as we shall 
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discuss now, the effective potential given in (1.4) is of 

interest due to several reasons. 

i) -Hall, Lykken and Weinber~g5 analyzed the problem in a 

somewhat different way. They assumed that in the limit of 

global supersymmetry, when the hidden and the observable 

sector fields are completely decoupled, the observable 

sector contains a set of heavy fields with masses of order 

M(ru1016GeV) and a set of massless fields z~. They then 

eliminated the fields in the hidden sector, as well as the 

heavy fields in the observable sector by minimizing the full 

potential (1.1) with respect to these fields, and obtained 

an effective potential involving the light fields only. The 

effective potential was found to be independent of the heavy 

scales M and M an& depends only on the scale m 
P’ 

Hence the 
g’ 

fields which were massless in the supersymmetric limit, 

acquire a mass of order mg-100 CeV, and the hierarchy of 

mass scales is not destroyed. 

We may also start from the theory described by the 

potential (1.4) and eliminate the heavy fields by minimizing 

the potential with respect to these fields. As we shall 

show in Sec.11. the effective potential found this way is 

identical to the effective potential found in Ref.5, except 

for corrections of order M/M in the value of m Hence, at 
P g . 

least at the tree level, the effective potential (1.4) is as 

good as the full potential (1 .l) in finding out the low 

6 energy predictions of the theory. 
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ii) The full tree level potential given in (1.1) may be 

expressed a8 a sum of the potential given in (1.4) and some 

extra terms, which involve coupling between the hidden 

sector fields zh and the observable sector fields z. 
1’ and 

also terms which involve only the observable sector fields 

zi or only the hidden sector fields z 
h’ If we take m 

g’ 
M and 

M 
P 

to be the three independent mass scales of the theory, 

then all these extra interaction terms will have explicit 

powers of M in the denominator. 
P 

Hence it is unlikely that 

any radiative correction involving these vertices will 

cancel the radiative corrections involving only the vertices 

given in (1.4). Hence a necessary, but certainly not 

sufficient, condition for the stability of mass hierarchy 

under radiative corrections in the full theory is that the 

radiative corrections in the truncated theory described by 

the superpotential (1.4) will not affect the mass hierarchy 

present at the tree level of the theory. 

Hence in this paper we shall analyze the effect of 

radiative corrections in the theory described by the 

potential (1.4). The theory may be described as a globally 

supersymmetric theory described by the superpotential WC+,) 

with explicit soft supersymmetry breaking terms in the 

action of the form, 

+ MICA-3) WCt) t h.C.3 - ma' 5: It;? 
.L 

0.7) 
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In order to illustrate the subtleties involved in the 

analysis of the problem, let us consider minimal 

super-symmetric SU(5) model, given by the superpotential, 

where $, H and H belong to the 24, 5 and 5 representations 

of SU(5) respectively. In the limit of unbroken 

supersymmetry, the potential is given by, 

v = ,z I A,{3< +2- 
L,J 

~ T4 ;P’)ij +ZM, aij~-F )LzCHisj -~ ‘,~ik ‘,)lL 

+ ~ 15: (X, ~;j +M, ‘i;) rC,I’ t t in ‘;;; (~L’~P~; tM,s;j)Ir i J i i, 
+ b te*mS 

The potential has a minimum at, 

<l-Ii> = <‘;;,> =o 

The masses of the weak doublet and the color triplet 

higgses are respectively, 

m, =- 2M,Aa+ W2 -‘a = 3 M, A, + M, (I.II) 



and by fine tuning the parameters so that M 2=2M,&+O(md, the 

higgs doublet mass may be kept much smaller than its color 

triplet, partner. 

Let us now consider the effect of adding an arbitrary 

soft supersymmetry breaking term in the Lagrangian, e.g. 

- WII c C A A, §ii FL Hi + (A-1 ) ~2 TTi S,, .H; ] 0 J (LIZ) 
which are two of the terms in the soft breaking terms given 

in (1.7). If we now minimize the full potential keeping 

M2=2M A 1 2' the soft breaking term (1.12) will produce a large 

mass term of the form -mgM2HH for the higgs doublet. By 

retuning the parameters M, and M 2, we may keep the mass of 

-t one particular linear combination of H and H to be of order 

mg’ 
but the orthogonal linear combination will have a mass 

Of order q. When we include the effect of radiative 

corrections, the mass terms proportional to /HI2 and [iI2 

get renormalized, and hence both the higgs fields acquire 

mass of order q, unless we readjust the parameters of the 

theory. Hence the individual soft breaking terms given in 

(1.7) may destroy the hierarchy of mass scales which is 

present, in the supersymmetric limit. However, as we shall 

show in Sec.11, due to a delicate cancellation between 

different terms in (1.71, any mass hierarchy present in the 

supersymmetric limit is unperturbed by the soft 

supersymmetry breaking terms given in (1.7). 

In Sec.111 we shall study the effect of radiative 



9 

correction3 in the theory. In this paper, we only analyze 

theories without gauge interactions. In the limit of 

unbroken- supersymmetry, no-renormalization theorems 

guarantee that the radiative corrections do not destroy the 

tree level mass hierarchy. Various authors7’* have studied 

the effect of supersymmetry breaking on mass hierarchy in 

globally and locally supersymmetric models. But there is no 

general proof of the stability of the mass hierarchy against 

radiative corrections to all orders in perturbation theory. 

In this paper we shall analyze the problem by writing down 

the most general effective potential in the superfield 

formalism. This is done by using a powerful theorem due to 

Crisaru, Rocek and Siegel”“. We show that to all orders in 

perturbation theory the radiative corrections generated due 

to the soft supersymmetry breaking terms do not destroy the 

hierarchy of mass scales, provided there is no light field 

Of mass of order 
mg 

in the theory which transforms as a 

singlet under the unbroken symmetry group of the theory. 

The instability of mass hierarchy in the presence of light 

singlet fields has been discussed previously by several 

7 authors . We summarize our result in Sec.IV. 
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II. LOW ENERGY EFFECTIVE POTENTIAL AT THE TREE LEVEL 

We shall consider a supersymmetric model with 

superpotential W(4), which is assumed to be invariant under 

some symmetry group G. We shall denote by zi the scalar 

components of the superfields 4i. If supersymmetry is 

unbroken, the potential involving the scalar fields is given 

by, 

v,CZ;) = f 1 g z 
&’ 

(2.1) 

In this paper we shall ignore the effect of all gauge 

interactions, and take G to be a global symmetry group. The 

potential (2.1) is assumed to have a supersymmetric minimum 

at z.=z!'), where, 1 1 

awCF) = 0 
azi 

v.i 

Some of the scalar fields are assumed to have a 

non-zero vacuum expectation value (vev) of order M at this 

minimum, which breaks the group G to one of its subgroup5 H. 

We shall divide the scalar fields into the following two 

classes: 

zA: These are superheavy complex scalars which acquire 

masses of order M at the minimum of the potential. 
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Zd : These are light complex scalars which are massless 

in the supersymmetric limit. In a realistic model, zq’s 

include all the known fields of mass,$lTeV. Also, since in 

the present discussion G is a global symmetry group, the 

Goldstone bosons corresponding to the symmetry breaking, and 

the scalar fields belonging to the same supermultiplet as 

these Goldstone bosons, are masless and included in the set 

% . In the presence of gauge interactions the Goldstone 

bosons are absorbed by the gauge bosons through the higgs 

mechanism, whereas their partners, belonging to the same 

supermultiplet, acquire large mass through the D term of the 

potential and become degenerate with the gauge bosons. 

These were considered as a separate class of fields in the 

analysis of Ref.5.. 

-2 As can’be seen from Eq.(2.1). the mass matrix at the 

minimum of the potential is given by the square of the 

matrix (a2W/azibzj)lz~s(0). Since zA and zN denote the heavy 

and the light fields respectively, we have at z=z (0) , 

a2W azh 
- a, at, 

=o 
2% a*i3 

O-3) 

TfW 
bZ,q at, 

= PI,8 rv M (2.9) 

For reasons that will become clear later, we shall 
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aSS”me that none of the light fields zd is a singlet under 

the unbroken subgroup H. Hence, 

z-c 
la) =o (2.5) 

Let us now introduce explicit soft supersymmetry 

breaking terms in the potential of the form, 

AV = ~YTT~(A-~) w + ma.$ zi az, aY\/ + kc.5 + qpf 

(24 

where m is the gravitino mass, 
g 

and A is a constant of order 

unity. The origin of these terms has been discussed in the 

introduction. The total potential is then given by, 

v= v, 4&V (2.7) 

We shall eliminate the heavy fields a A from the 

potential by minimizing the potential with respect to these 

fields, and construct an effective potential involving the 

light fields ati. Following Ref.5 we calculate the effective 

4 potential to order m for arbitrary values of the fields ax 
g 

of order 
mg’ 

Let us express the value of zA at the minimum 

of v, for arbitrary values of the fields ad-m as, 
k3’ 

5 - ~7 ,+ $ + t:J + _ _ _ 
(2-g) 
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where (n) 
a A is of order m n/M”-‘. 

B 
In writing down (2.8), we 

have implicitly assumed that zA-ZA (O) is at most of order 

mg. 
This assumption may be verified at the end of the 

calculation. Using Eqs. (2.11, (2.6) and (2.7), we get, 

;3v=x azw 
ass i=W,A a?& az& ( 

aw +rn&F+ at, ma ( 2!c! +m,t,*) az, 

+m&v3) aw Z-0 
azB 

which may be written as, 

a’w 
F--- c aw +mp,*) Y 

;3t,a6l atfq 

,r a2 tr/ ;3w + ma 2y 1 
* =- ( 4 gTiEat, a& 

- n?& ( 5; +mp5,*) 
B 

- e-l3 (A-3) ;+ 
B 

Assuming that zA-aA ‘OjNrn 
L3’ 

zMw m 
g’ 

and using Eqs.(2.3), 

(2.4). we may easily show that the first term on the right 

hand side of (2.10) is of order m 3 , whereas the second and 
B 

the third terms are at most of order m 2M. On the other 
g 

hand, (a2W/azgazA) is a non-singular matrix with eigenvalues 

of order M. Hence from Eq.(2.10) we get, 

* a-* +mpn “ma2 
a+ 

(2.11) 
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Substituting this on the right hand side of Eq.(2.10) we 

get, 

>W 

zg 

‘(~-3) (I’(‘)+,~ ;f’; * + c ( m’3/‘y ) 

(2.12) 

which gives, 

(szs)o c r(:: + C’) + i [,$& az) s$J .zf’ 

= 3-g < A-3) (q-‘)aB SC; * + 0 ( Tp”) (2. 13) 

where repeated indices are summed over. Equating terms of 

order m g M on both sides we get, 

z 01 
B = - WII(M-‘).~ t’; * (2.4 

Equating terms of order m ’ on both sides of (2.13). we get, 
8 

$; = (M-‘)Bfl {Yn/ (A-3)(M-‘)A~ tz’” - m~ z;‘* 

-& a3w 
i I 

(01 

at, at,a% 

tc g’ - a3w 
( at, =, “sq ) 

01 
2, G 

-I ( 

a3w 
2 

1 azk at*-=p 
-Kc 54 

(2. IS) 
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We may now proceed to evaluate the full effective 

potential. Eqs.(2.1), (2.6) and (2.7) give, 

-+na(A-3 ) W <t,, ‘f, ) + kc.5 

From (2.12) we see that 
* 

aW/azA+m z is of order 2 
g A mg ' 

and independent of the light fields zd. Hence the first term 

of (2.16) contributes just a constant term to V eff(zK) to 

order m 4 
g * 

The second term in (2.16) may be written as, 

$ p!+ m,zq*i2 
4 

where, 

t, =o) 

(2.16) 

Using Eq.CZ.3) we may show that Weff is of order m 3 

hence (2.17) is of order m 4 
g * 

Also since ~1’) is indeEeidI:z 

of Zd.’ &W eff ‘a% is equal to ‘3w/az, to order 2 m 
g - 

This 

shows the equality of (2.17) and the second term of (2.16). 

Finally the third term on the right hand side of (2.16) 

is given to order m 
8 

’ by, 

m3 (A-3) i(wit) -weti (3~) ) 4 we, c&c) 3 + h. C. 



+ h.C. +feRmS indeien dent qf Z, (2 19) 

By expanding both W(zA, z,) and W(z =,(O)+z(‘) z ) 
A A A’ ri 

about the point z.=z!‘) 
1 1 ’ we may reduce (2.19) to, 

ma (A-3) wes Ct, ) + ~rnd e-3) (3s3jo 2;) 2'h" + h.C. 

+ fePcmS inde+enben* 4 z* + 0 (%-?+-I) 

using Eqs. (2.15) and dropping the constant terms 

(remember that z:” ” 1s independent of zq) we er+zss (2.20) &s, 

z’;’ -c -& 3 + h.C. 
e 

5 m&A-3) { W, <t,)- W~‘C-Z+)- 2Wz Ct,)$+h,C. @zJ) 

where w(2) 
eff and w(1 1 

eff are respectively the terms in Weff 

quadratic and linear in ~~‘9. (2.21), together with (2.17) 

gives the full effective potential of the system, 
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V =ff =$I l~*+rn3z~~lz + Ims@-3)5Lvey CZ,) 
4 

- w!$< zK ) - 2 ‘d; C t,) 1 + h. c.] 

This is identical to the expression for the effective 

potential derived in Ref.5. 

We may illustrate the significance of the above results 

by considering the SU(5) model introduced in sec.1. 

According to the results derived in this section, the weak 

doublet parts of the H, i Fields acquire a mass at most of 

order m 
g 

after the introduction of the sol-t supersymmetry 

breaking terms. What really happens is that after we 

introduce the supersymmetry breaking terms, the quantity 

~,[~‘ji02-Tr~2/5)+2M,*) no longer vanishes at the minimum of the 

potential, instead it is of order mgM. The First term on the 

right hand side of Eq.Cl.9) then gives rise to a mass term 

of the H, H fields of the Form mgMHH. This term exactly 

cancels the term given in (1.12). This cancellation 

requires that the various supersymmetry breaking terms have 

their coefficients as given in Eq.Cl.71, and a small 

deviation from this form will produce a large mass of the 

weak doublet higgs. 
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III. RADIATIVE CORRECTIONS 

In this section we shall discuss the effects of 

radiative corrections in the class of models discussed in 

Sec.11 using the superfield Formulation. Let +i denote the 

chiral superfields of the theory. Let us also introduce a 

spurion superfield q, defined as, 

2-m es 
r3 (3-1) 

where e , 7j are the fermioniccoordinates of the superspace. 

The Lagrangian density of the theory introduced in Sec. II 

may then be written as, 

EJ &‘e w C+, + h.C.3 + .$ tie d.‘8 5~ +; 

- c .$ dJB cr. +i $. + 'j CA-3) W($l) + h-C-3 
rL 

(3.2) 

where the terms involving T are the expl 

supersymmetry breaking terms. The potential invo 

scalar Fields obtained from the Lagrangian density 

be written as, 

icit soft 

lving the 

(3.2) may 

- F FL+ Fi - r (FL z$ c h-C. ) 
i i h 

t c t-PCs q t; ?$ + (u-3) WC&l 
.c 

+ h-C-1 + ?-na2-ri+lz 
i 
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where Fi’s are the auxiliary components of the super-fields. 

Elimination of Fi’s through their equations of motion gives 

the potential VO+AV given in Eqs.cZ.1) and (2.6). 

Before proceeding further, we shall make some 

rearrangement of various terms. Let z!‘) 1 denote the point 

at which the potential (3.3) has its minimum with respect to 

all the fields zA and zq. We may then consider perturbation 

expansion around the point ~1’). Let us define, 

f& = ti - z;” 
(3.4) 

By straightforward algebraic manipulation, the full 

potential (3.3) may be brought into the form, 

-C CFi -maZj”)+ (F, -mJt:c)) 
i. 

m&c’)( z+ tD-&““)+h.~.$ I- 
??? t (h-31 WC-Z) + kc.3 

L 

+ r%i”(flzJz - ‘p:‘l’) 
Let us define, 

FL = F; - ma zy 

(3.5 ) 

66) 

(3.7) 
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Then the potential (3.5) may be written as 

- c y-;I; - 2 CFi 
i i 

2, + h.c-) 
A 

+ mA f f si g+. 4- (A-3) W ct) + h.ce 5 

h 

+ Consf0-ht teRmS (34 

The first two terms in (3.8) may be interpreted as 

coming from a supersymmetric theory with superpotential W. 

The other terms are explicit soft breaking terms in the 

model. Since w and W differ from each other by a linear 

term, they give rise to the same scalar-fermion Yukawa 

coupling. If +i denote the superfields of the original 

model, then we define, 

$. 
A 

= +. - z’c’ 
I- h 

The action may then be written as, 

2 .I dZe “w c 4 ) + h.C.j + f&$e q; & 

-isd’e qc$.& as, + (A-3) WC+)) + h.C.5 
J. 

- 1 CL20 A2cT T ‘i $ +i 

(3-q) 

(3.10) 
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The structure of radiative corrections in this theory 

iS constrained by a theorem due to Crisaru, Rocek and 

Siegel’. .~‘The theorem states that the effective action 

generated by radiative corrections in the theory must be of 

the form, 

1 q a’4 l-&Q) fG+,Cx;,8), qtel) (3-H) 

where f is a polynomial in the superfields +i, si, ‘1 , 7 and 

their covariant derivatives, but does not contain any 

explicit dependence on e or B . Note that the effective 

acti,on, although a non-local function of the xj’s, is a 

local function of e, since it involves product df fields at 

the same fermionic coordinates O,g . This theorem, together 

with the .rules of integration over the anti-commuting 

numbers c, 

$bc=o Jcbc = I (3.12) 

restricts the possible radiative corrections in the theory. 

Since the 8 and 3 integrals in (3.11) must be saturated 

according to the rule of integration given in (3.x2), the 

possible radiatively induced terms must be of the form FiFj, 

q+ F i, q+r , or terms involving higher powers of Fi 

and/or q", multiplied by arbitrary functions of the scalar 

fields. Hence we may write the radiatively induced 
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effective potential as, 

-Fj+eie tLij <s,G+) - mgi’FL $j;<s,s+, c h.C.5 

+ ‘TM’I z f&,2+) + ocF3) 

where f, g and h are polynomials in the scalar components of 

the superfields. For the time being, we shall ignore the 

O(F3) term in the effective potential. It will be argued 

later that these terms do not destroy the mass 

hierarchy. 

Taking the full potential as the sum of (3.8) and 

(3.13). and eliminating the fields through their 

equations of motion, we get, 

” = f ;+. + ma 3; ct*, ;+1j* (T+k,yj 5 ;g? +rn&;<;‘$+)j h J 
+ (A-3) WCs) + h.c.5 

+ rr‘g ff lzgZ + f ci?,s+) 2 (Y-l+) 

dropping the constant terms in the potential. 

The functions f, gi and hij have mass dimensions 2, 1 

and 0 respectively. Hence, in general, the functions h, g, 

f, agi/Azj and bf/az i will at most be of order unity, M, M2, 

unity and M respectively, upto factors of 1ogM and 1ogM 
P’ 
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This is true unless the graphs contributing to these 

functions have power law infrared divergence in the mg+O 

limit, in which case we may get extra powers of M/m 
g’ 

It can 

be shown that such infra-red divergences are absent in the 

12 class of theories being analyzed here . 

Besides satisfying the bounds estimated from pure 

dimensional analysis, af/az 
a and ga satisfy the bounds, 

due to the following reason. Since the potential must be 

invariant under the unbroken subgroup H of G, and none of 

the fields za, transform as singlets under H (as we have 

assumed) both ge and af/az a must transform non&trivially 

under H. Hence both of them vanish at zop0, and must be of 

order z 
LTrng for non-zero values of za,. 

We now minimize the potential with respect to the 
1) 

fields zA (or 2,). This gives, 

LG C( a,'iyA +m , at, a+ & a* 1 @+li);l. ( ;2 + rn&& (2, us+))+ 
a % A 

t ~~ ~~ ~+~,~~j ( ~-~, + "~ 8; ) 

A 
J 

A$. + m,8Jf 

t. 

a" ra)-;; $ (a% 

A 

32, + m&%)J 

J 
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+ ma C<$ + r ih $%L, 
A A A A 

+(+3)agg 
A 

> tn-$(zA”+~$~)=O 

(3.16) 

which may be written as, 

g ( a’ -c xm3 2) c-r+iJ’,, (age+ m+)* 
> az*at, A 

=- Z (I+kjbq ( 2.52 + mg a2 1 ( $$ + ma h)* 
-06 a6 2% 6 

-gq (I+hjL, (.$i.$ 

A B 

+mgagp I ( ac$ +m:,d 

-qrp (I +!q ( aZ 4 ma ar$) ( ;g ~+,+a ,y,1* 

, at, atp x 

-2 E z aSi.* (r+hjt3 ( $$ + ma 8;) 
A J 

- is 
> 

a$ 
A 

3 @a hi’,; 3 ( a” + n-g S^)” ( 2, + mg 8;) 
asi .I 

- “Md ( 3; -I. f Gi a’* t(P-3 1 ;< ) 
A a+$ azi A 

- m! 2 CZA',y + af ) (317) 
a& 

We may solve these equations to find zA as a function 

of the f ielda zo( and substitute these values in (3.14) in 

order to find the effective potential as a function of zd. 
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We solve these equations by iteration as in Sec.11. We 

start from the ansatz, 

Y 
a-h tmac$q r-urn 
&-;5, 

a* VA 

Using Eqs.(2.3), (3.7)) (3.15) and (3.18) we may show that 

the right hand side of (3.17) is of order mg2M, the terms of 

order m g2M being given by, 

-& c r+hjd,. MA, ( 22 + m. s-( 1” + ma* ~zl~+++a,~~~-Z) d. 

- ma $ $ M,, -?-v-II~ <$;‘* + af ) 
asA 

E ma2 Yp 

In deriving the above equation we have used the 

relation, 

a3 - aG _ cc)* 
atA at, 

ma % d-n5 q* + SA ) i 0Cn-g) 

(3.20) 

Eq.(3.17) now gives ua, 

C%c (WI-‘,, 
B,C 

(g t m,d* 
B 

= r-n? * yA + o(maz) (3.2 I ) 
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which may be solved as, 

= W$[($+h)-’ Ml-;, YA 

I(I+h)-‘MIAB is a non-singular matrix 13 with eigenvaluea of 

order M. Hence the right hand aide of the equation is of 

order m 2 
g 

, which shows the validity of the anaatz (3.18). We 

may nObi try to solve Eq. (3.22) by expanding =A as in 

Eq.(2.8). Eq.(3.22) gives, 

(aTJLA)a ( z’]: t 2;’ ) q, TgJ a~ B * =I z’;\’ ‘2, 

+ ( PW 

az* agq 234 I 

(‘1 
ZA z* +J. a3w 

2 c at, az* a$, I 
%z zp 

+ rnA & i$ * + 2-8T? gy) +ms ( sB czz’ ) + gs (z:+ Ti , 4 (” t )-8, q)) 

= yj’I(r+kr’d-:,B~ y, + 0 0-p-l) 

which gives, 
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2 zz) = (M-‘jAB [ NII~{(J + k j’ M j-’ y - $ 
CB c 

z;) z; 

-c 
a3 .w 

ai, azc 22% 1 
‘t’c” &- $ 

c 
a>w 

azs at, aq 1 z* ~ZP - mJJt,“‘*- *c* ) 

- r”s- (a, cq+z;, ZJ - se q,)] (3.25) 

(1) Eq.(3.2$) shows that ZA is independent of the light 

fields zd. T,,,,s ;;’ )=,;’ )-,;‘) must also be independent of 

zL%. Thus the only zq dependent term in yA to order M comes 

from the first term on the left hand aide of Eq.(3.19). As 

in Sec.11, only the zti (2) dependent part of zA is relevant in’ 

calculating the effective potential to order m 4 
E . 

Hence we 

(1) may now substitute the values of zA and the zq dependent 

part of z12) in (3.14) and calculate the effective potential 

as in Sec.11. Here we shall show that this effective 

potential is at most of order m 4 so that the 
g 

for 7.*<Nrn 
g’ 

tree level hierarchy is not destroyed by radiative 

corrections. As can be seen from (3.221, (aH/lzg+mggB) is 

of order m 2 
g 

, hence the first term on the right hand aide of 

(3.14) is of order mg4. Contribution from other terms to 

order m 3 
g 

M may be obtained by expanding various term3 around 

the point zi=z (0) 
i . This contribution may be written as, 

“-J-J ‘b-3) i $(a$$), P’;’ Z;’ + h. c. &{+(dJ ( t;*+g,cacy~.< 

+ 3 -2 r/$-J 12 + fct”‘) + (.zyy’ +h.c.) C( ?Ls 
( 1 *A * 

t;+l\.e.jj 

+y~-3~{wCt”‘l c h.C-3 + o lrn&‘) (3.26) 
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However, since z (1) 
A is independent of the light fields 

zcI’ each of the terms in (3.26) is independent of so. Hence 

the effective potential involving the field so is at most of 

order 4 
mg ’ 

showing that the radiative corrections do not 

destroy the tree level mass hierarchy. 

Note that the absence of light singlets is crucial in 

our analysis. If some of the fields so are singlets of the 

group H. the corresponding ga and af/azo may be of order M. 

This will give contribution of order m 3 
I3 

M or more to the 

effective potential from the la~iazo+mggo~* term, as well as 

the ( af/aza)za term in the Taylor series expansion of f. 

Finally we shall comment on the terms of order F3 in 

(3.13). We may include the effect of these terms by solving 

for F iteratively, the O(F3) terms being ignored at the 

first stage of iteration. This gives a solution Fi-m *, 
g 

as 

is seen from Eq.(3.18) and a corresponding expression for 

ai/aza+mgga. If we substitute this value of F in the next 

-3 stage of iteration, the order F terms contribute at most to 

O(m g2) in t;e new value of F and O(m g4) to the potential. 

Also, since aFi/a2 <M, 
.I- 

the derivative of this new term with 

respect to ZA contribute at most a term of order m 2 
g 

M on the 

right hand side of Eq.(3.17). Hence it does not upset any 

of the results obtained at the first stage of iteration, and 

the mass hierarchy is maintained. 
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IV. CONCLUSION 

In this paper we have studied radiative corrections in 

a supersymmetric theory with soft breaking terms induced by 

N-l supergravity. We consider models where the low energy 

theory is invariant under some group H and none of the 

light fields transform as a singlet of this group. Also in 

this paper we consider theories without any gau’ge fields. 

For this class of models, any hierarchy of mass scales, 

present in the limit of unbroken supersymmetry, is shown to 

be preserved after the inclusion of the supersymmetry 

breaking terms at the tree level, and also after inclusion 

of radiative corrections to all orders in the perturbation 

theory. 

Although the absence of gauge fields and light singlet 

fields is a sufficient condition for the stability of mass 

hierarchy, it is, by no means, a necessary condition. 

However, the analysis becomes considerably more complicated 

in these cases. In particular, when gauge fields are 

present, the theorem of Ref.9, as expressed in Eq.(3.11), is 

no longer sufficient to prove the stability of the mass 

hierarchy. We must also use the supersymmetric 

Slavnov-Taylor identities 14 of gauge invariance in order to 

restrict the possible form of the effective action. Work 

towards this direction is in progress. 

The effect of light singlets in grand unified theories 
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based on N-l supergravity has been discussed by Nilles, 

Srednicki and Wyler and by Lahanas7. They showed that the 

presence- of trilinear coupling between one light singlet of 

ma33 of order m 
8 

and two heavy fields of mass of order M in 

the superpotential destroys the ma33 hierarchy. This rules 

out the use of sliding singlet mechanism 15 to keep the weak 

doublet higgs light compared to its color triplet partner in 

SU(5) grand unified theories. The problem may be avoided in 

a class of sU(6) grand unified theories in which the sliding 

singlet acquires a mass of order q 16 . In these models, 

the problems indicated in Ref.7 are absent, although an all 

order proof of the stability of mass hierarchy is still 

lacking. 

Finally we should mention that in the analysis given in 

this paper, we have ignored the terms in the tree level 

Lagrangian which have explicit powers of M 
P 

in the 

denominator (except those which come in the combination 

,3/M 2 
P 

-mg). If we want to include these terms in our 

analysis, we must also include the effect of loop 

corrections involving the gravitons and the gravitinos for 

consistency. At present there is no known way to take these 

corrections into account, since the N-l supergravity 

theories are neither renormalizable nor finite. Hence for 

the time being we have to be satisfied with the fact that in 

the zeroth order term in the expansion in powers of M -‘, 
P 

the radiative corrections do not destroy the mass hierarchy 
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to all orders in the loop expansion. 
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